Chem. Ber. 115, 1278 - 1285 (1982)

Vitamin-Synthesen mit Carben-Komplexen, II¹⁾

Carbonyl(carben)-Komplex-induzierte Synthese von Vitaminen der K₁- und K₂-Reihe

Karl Heinz Dötz*, Ingrid Pruskil und Jochen Mühlemeier

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 4. August 1981

Pentacarbonyl(methoxyphenylcarben)chrom(0) (1) reagiert mit den isoprenoiden Eninen 2-6 zu den Tricarbonyl(dihydrovitamin K)chrom(0)-Komplexen 7-11. Deren Oxidation mit Silber(I)-oxid liefert die Vitamine der K_1 - und K_2 -Reihe 17-21, während die $5-10-\eta^6$ -Isomeren 12-16 zu den Tricarbonyl(vitamin K)chrom(0)-Komplexen 22-26 oxidiert werden. Die Synthesen verlaufen bezüglich der isoprenoiden Seitenketten stereospezifisch.

Vitamin Syntheses via Carbene Complexes, II 1)

Carbonyl Carbene Complex Induced Synthesis of Vitamins of the K1 and K2 Series

Pentacarbonyl(methoxyphenylcarbene)chromium(0) (1) reacts with the isoprenoid enynes 2-6 to give the tricarbonyl(dihydrovitamin K)chromium complexes 7-11. Oxidation of 7-11 with silver(I) oxide leads to the vitamins of the K_1 and K_2 series 17-21, whereas the $5-10-\eta^6$ -isomers 12-16 yield the tricarbonyl(vitamin K)chromium complexes 22-26. The syntheses proceed stereospecifically with respect to the isoprenoid side chain.

Frühere Arbeiten über das Reaktionsverhalten von Pentacarbonyl(arylalkoxycarben)-Komplexen des Chroms gegenüber 1,4-Eninen hatten gezeigt, daß die bei Alkenen beobachtete Cyclopropanierung ²⁾ zugunsten einer stereoselektiven Cyclisierung von Carbenligand, Carbonylligand und Alkinkomponente zu Metall-koordinierten 4-Alkoxy1-naphtholen unterdrückt wird ³⁾. Wir versuchten inzwischen, diesen Reaktionsweg zu einem Zugang zu Vitaminen der K-Reihe auszubauen. Über erste Ergebnisse wurde bereits berichtet ^{1,4)}.

Tricarbonyl(dihydrovitamin K)chrom(0)-Komplexe

Pentacarbonyl(methoxyphenylcarben)chrom(0) (1) reagiert mit den isoprenoiden Eninen 2-6 beim Erwärmen in Dialkylethern zu den Tricarbonyl $[1-4:9,10-\eta^6-(4-methoxy-1-naphthol)]$ chrom(0)-Komplexen 7-11. Bei höheren Temperaturen tritt eine teilweise Umlagerung zu den $5-10-\eta^6$ -Isomeren 12-16 ein.

Die Koordination über den unsubstituierten Naphtholring in 12-16 ist mit einem verringerten Donor-Akzeptor-Verhältnis des Naphthol-Liganden verbunden und führt damit zu einer gegenüber 7-11 kurzwelligen Verschiebung der v(CO)-Banden, die insbesondere bei der v(CO)-Schwingung der Rasse A_1 deutlich wird. Somit kann in Isome-

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/0404 – 1278 \$ 02.50/0

rengemischen (z. B. 7 und 12) aus der Intensität der kurzwelligen Schulter der A_1 -Bande das Isomerenverhältnis grob abgeschätzt werden. Demgegenüber erlauben spektroskopische Untersuchungen allein keine eindeutige Aussage über die Substitution in 2- bzw. 3-Stellung. So sind beispielsweise die aromatischen Methylprotonen in Tricarbonyl-(4-methoxy-2,3-dimethyl-1-naphthol)chrom(0) in $[D_6]$ Aceton magnetisch äquivalent $^{5)}$.

Durch sorgfältige Chromatographie an Kieselgel erreicht man, wie am Beispiel von 7 gezeigt wurde, eine Trennung in ein schneller wanderndes 2-Phytyl-Derivat $\bf a$ und eine nachfolgende 3-Phytyl-Verbindung $\bf b$. Diese Zuordnung konnte durch eine unter CO-Druck erfolgende Abspaltung des Naphthol-Liganden aus $\bf 7a$ und dessen Cyclisierung zum Naphthochromenolether $\bf 27$ getroffen werden, der sich als identisch mit einer durch baseninduzierte Isomerisierung $^{6)}$ von Vitamin $\bf K_{1(20)}$ und anschließende Methylierung $^{7)}$ dargestellten authentischen Probe erwies.

v(Cr)(C=O)			v(Cr)(C=O)		v(C)(C=O)	
7a)	1955 s, 1889 s, 1874 s	1 7 °)			1663 m	
7ab)	1955 s 1883 br	18c)			1665 m	
7b b)	1957 s, 1885 s, 1872 s	19c)			1662 m	
8 a)	1955 s, 1888 s, 1873 s	20 °)			1663 m	
9a)	1958 s, 1890 s, 1880 s	21°)			1660 m	
10a)	1959 s, 1893 s, 1876 s	22 c)	1992 s	1937 vs	1662 m br	
11a)	1956 s, 1890 s, 1876 s	23c)	1992 s	1937 vs	1660 m br	
12a)	1959 s, 1900 s, 1878 s	24 c)	1991 s	1935 vs	1658 m br	
13a)	1966 s 1895 vs	25°)	1991 s	1939 vs	1659 m br	
14a)	1964 s 1902 vs	26 c)	1993 s	1938 vs	1659 m br	
15a)	1963 s 1901 vs					
16 a)	1964 s 1900 vs					

Tab. 1. v(CO)-Absorptionen von 7-26

Abspaltung des Dihydrovitamins K

Durch Erwärmen einer etherischen Lösung der Tricarbonyl(naphthol)chrom(0)-Komplexe in Gegenwart geeigneter Liganden wie Kohlenmonoxid läßt sich die Aromat-Metall-Bindung spalten 8). So erhält man beispielsweise aus 7 die Dihydrovitamin $K_{1(20)}$ -monomethylether 2 8 8 8 8 0 und 8 0, deren Trennung durch HPLC an Kieselgel gelingt.

Diese glatt verlaufende Ligandenabspaltung erscheint insbesondere dadurch vorteilhaft, daß sich das dabei anfallende Hexacarbonylchrom wiederum zur Synthese des Carben-Komplexes 1 verwenden läßt und 28a und b ohne Isomerentrennung mit herkömmlichen Methoden zum Vitamin $K_{1(20)}$, dem wichtigsten Vitamin der K-Reihe, oxidiert werden können 9 .

Oxidation zu Vitamin K-Derivaten

Die Spaltung der Aromat-Metall-Bindung gelingt auch durch Oxidation^{3,8)}. Dabei wird gleichzeitig die 1,4-Diolmonoether-Funktion zum 1,4-Naphthochinon oxidiert. Als selektives Oxidationsmittel erwies sich Silber(I)-oxid¹⁰⁾. So wird die Chrom-Aromat-Bindung nur dann zu 17-21 gespalten, wenn das Metall an den persubstituierten Ring koordiniert ist. Auf diese Weise werden in Ausbeuten von ca. 50% die Vitamine $K_{1(20)}$ (17), $K_{2(5)}$ (19), $K_{2(10)}$ (20) und $K_{2(15)}$ (21) erhalten.

a) In *n*-Octan (cm⁻¹). - b) In CS₂ (cm⁻¹). - c) In CCl₄ (cm⁻¹).

Tab. 2. ¹H-NMR-Spektren^{a)} von 7, 10, 11, 17-26 und 28^{b)}, δ-Werte, int. TMS

5.40 (t, 1) 3.50 3.12 (d, 2) 2.15 4.97 (t, 1) 3.53 3.40 (d, 2) 2.06 5.13 (m, 2) 3.78 3.53 (d, 2) 2.40 2.03 (m, 4) 5.20 (m, 3) 3.82 3.60 (m, 2) 2.37 2.00 (m, 8) 4) 4.93 (t, 1) 3.40 (d, 2) 2.13 5.10 (t, 1) 3.40 (d, 2) 2.23 4) 5.10 (t, 1) 3.40 (d, 2) 2.23 4) 5.03 (t, 2) 3.43 (d, 2) 2.18 2.05 (m, 2) 4) 5.08 (t, 3) 3.80 (d, 2) 2.10 1.97 (m, 8) 4) 5.08 (m, 1) 3.90 (d, 2) 2.83 4) 5.20 (m, 2) 3.80 (d, 2) 2.83 4) 5.20 (m, 3) 3.83 (d, 2) 2.83 5.20 (m, 4) 3.80 (d, 2) 2.83 5.20 (m, 4) 3.80 (d, 2) 2.85 2.02 (m, 8)		C_6H_4	=CH	OCH ₃ (s, 3)	$ArCH_2CH =$	ArCH ₃ (s, 3)	$=$ CHC H_2 $-$	= CCH ₃
ca. 7.70 (m, 2) ca. 7.70 (m, 2) ca. 7.70 (m, 2) ca. 7.70 (m, 2) ca. 8.10 (m, 2) ca. 8.20 (m, 2) ca. 8.20 (m, 2) ca. 8.20 (m, 4) ca. 7.50 (m, 4) ca. 8.30 (m, 5) ca. 8.30 (m, 4) ca. 8.30 (m, 4) ca. 8.30 (m, 2) ca. 8.30 (m, 2	7a ^{c)}	ca. 7.80 (m, 2)	5.40 (t, 1)	3.50	3.12 (d, 2)	2.15		1.60 (s, 3)h)
ca. 8.20 (m, 2) ca. 7.50 (m, 2) ca. 8.20 (m, 2) ca. 7.50 (m, 2) ca. 7.50 (m, 4) ca. 7.50 (m, 4) ca. 7.90 (m, 4) ca. 8.30 (m, 5) ca. 8.30 (m, 5) ca. 8.30 (m, 5) ca. 8.30 (m, 2) ca. 8.30 (m, 2	7 b c)	ca. 7.00 (m, 2) ca. 7.70 (m, 2)	4.97 (t, 1)	3.53	3.40 (d, 2)	2.06		1.63 (s, 3) ¹⁾
ca. 8.20 (m, 2) 5.20 (m, 3) 3.82 3.60 (m, 2) 2.37 2.00 (m, 8) ca. 7.50 (m, 4) 4.93 (t, 1) 3.30 (d, 2) 2.13 2.00 (m, 8) ca. 7.90 (m, 4) 5.10 (t, 1) 3.40 (d, 2) 2.13 2.05 (m, 2) ca. 7.90 (m, 4) 5.03 (t, 2) 3.43 (d, 2) 2.18 2.05 (m, 2) 7.60 - 8.00 (m, 4) 5.08 (t, 3) 3.43 (d, 2) 2.18 2.05 (m, 2) 7.50 - 8.10 (m, 4) 5.08 (t, 3) 3.37 (d, 2) 2.10 1.97 (m, 8) 5.70 - 6.30 (m, 5) ⁸ 5.15 (m, 1) 3.90 (d, 2) 2.83 2.05 (m, 4) 6.00 - 6.30 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	10 ^{d)}	ca. 7.50 (m, 2) ca. 8.10 (m, 2) ca. 7.50 (m, 2)	5.13 (m, 2)	3.78	3.53 (d, 2)	2.40	2.03 (m, 4)	1.73 (s, 3) 1.60 (s, 3)
7.60 - 7.90 (m, 4) $4.93 (t, 1)$ $3.30 (d, 2)$ 2.13 ca. $7.90 (m, 4)$ $5.10 (t, 1)$ $3.43 (d, 2)$ 2.23 ca. $7.90 (m, 4)$ $5.10 (t, 1)$ $3.40 (d, 2)$ 2.23 $7.60 - 8.00 (m, 4)$ $5.03 (t, 2)$ $3.43 (d, 2)$ 2.18 $2.05 (m, 2)$ $7.50 - 8.10 (m, 4)$ $5.08 (t, 3)$ $3.37 (d, 2)$ 2.10 $1.97 (m, 8)$ $5.50 - 6.30 (m, 4)$ $5.15 (m, 1)$ $3.90 (d, 2)$ 2.83 $2.05 (m, 2)$ $5.90 - 6.30 (m, 4)$ $5.00 (m, 2)$ $3.80 (d, 2)$ 2.88 $2.05 (m, 4)$ $6.00 - 6.50 (m, 4)$ $5.10 (m, 2)$ $3.80 (d, 2)$ 2.88 $2.05 (m, 4)$ $5.90 - 6.40 (m, 4)$ $5.10 (m, 3)$ $3.80 (d, 2)$ 2.85 $2.02 (m, 8)$ ca. $8.30 (m, 2)$ $5.27 (m, 1)$ 3.96 $3.70 (m, 2)$ 2.34	11 ^{d)}	ca. 8.20 (m, 2) ca. 7.50 (m, 2)	5.20 (m, 3)	3.82	3.60 (m, 2)	2.37	2.00 (m, 8)	1.47 (8, 3) 1.83 (8, 6) 1.60 (8, 3)
ca. 7.90 (m, 4) 5.10 (t, 1) 3.40 (d, 2) 2.23 7.60 - 8.00 (m, 4) 5.03 (t, 2) 3.43 (d, 2) 2.18 2.05 (m, 2) 7.50 - 8.10 (m, 4) 5.08 (t, 3) 3.37 (d, 2) 2.10 1.97 (m, 8) 5.10 - 6.30 (m, 5) 3.80 (d, 2) 2.83 1.97 (m, 8) 5.50 - 6.30 (m, 5) 3.90 (d, 2) 2.83 2.05 (m, 4) 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	17 ^{d)} 18 ^{d,e)}	7.60 ~ 7.90 (m, 4) ca. 7.90 (m, 4)	4.93 (t, 1) 5.13 (t, 1)		3.30 (d, 2) 3.43 (d, 2)	2.13		1.35 (8, 3) 1.73 (8, 3) 10 1.70 (8, 3)
7.60 - 8.00 (m, 4) 5.03 (t, 2) 3.43 (d, 2) 2.18 2.05 (m, 2) 7.50 - 8.10 (m, 4) 5.08 (t, 3) 3.37 (d, 2) 2.10 1.97 (m, 8) 5.10 - 6.30 (m, 5) 3.15 (m, 1) 3.80 (d, 2) 2.83 5.50 - 6.30 (m, 4) 5.08 (m, 1) 3.90 (d, 2) 2.90 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	1 9 q)	ca. 7.90 (m, 4)	5,10 (t, 1)		3.40 (d, 2)	2.23		1.83 (s, 3) 1.83 (s, 3)
5.50 - 8.10 (m, 4) 5.08 (t, 3) 3.37 (d, 2) 2.10 1.97 (m, 8) 5.50 - 6.30 (m, 5)g) 5.15 (m, 1) 3.80 (d, 2) 2.83 5.50 - 6.30 (m, 4) 5.08 (m, 1) 3.90 (d, 2) 2.90 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	20 ^{d)}	7.60 – 8.00 (m, 4)	5.03 (t, 2)		3.43 (d, 2)	2.18	2.05 (m, 2) 2.00 (m, 2)	1.73 (S, 3) 1.80 (S, 3) 1.67 (S, 3)
5.10 - 6.30 (m, 5) 3.80 (d, 2) 2.83 5.50 - 6.30 (m, 5) ^{gl} 5.15 (m, 1) 3.90 (d, 2) 2.83 5.90 - 6.30 (m, 4) 5.08 (m, 1) 3.90 (d, 2) 2.90 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	21 ^{d)}	7.50 ~ 8.10 (m, 4)	5.08 (t, 3)		3.37 (d, 2)	2.10	1.97 (m, 8)	1.38 (s, 3) 1.78 (s, 3) 1.67 (s, 3)
5.90 - 6.30 (m, 4) 5.08 (m, 1) 3.90 (d, 2) 2.90 6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	22 ^{d)} 23 ^{d)}	5.10-6.30 (0 $5.50-6.30$ (m, 5)g)	m, 5) 5.15 (m, 1)		3.80 (d, 2) 3.90 (d, 2)	2.83		1.58 (s, 3) 1.78 (s, 3) ^{k)} 1.72 (s, 3)
6.00 - 6.50 (m, 4) 5.20 (m, 2) 3.80 (d, 2) 2.88 2.05 (m, 4) 5.90 - 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	24 ^{d)}	5.90 ~ 6.30 (m, 4)	5.08 (m, 1)		3.90 (d, 2)	2.90		1.63 (S, 3) 1.78 (S, 3)
5.90 – 6.40 (m, 4) 5.10 (m, 3) 3.83 (d, 2) 2.85 2.02 (m, 8) ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34	25 ^{d)}	6.00 – 6.50 (m, 4)	5.20 (m, 2)		3.80 (d, 2)	2.88	2.05 (m, 4)	1.87 (s, 3) 1.77 (s, 3) 1.63 (s, 3)
ca. 8.30 (m, 2) 5.27 (m, 1) 3.96 3.70 (m, 2) 2.34 ca. 7.65 (m, 2)	26 ^{d)}	5.90 – 6.40 (m, 4)	5.10 (m, 3)		3.83 (d, 2)	2.85	2.02 (m, 8)	1.53 (s, 3) 1.82 (s, 3) 1.67 (s, 3)
	28 ^{f)}	ca. 8.30 (m, 2) ca. 7.65 (m, 2)	5.27 (m, 1)	3.96	3.70 (m, 2)	2.34		1.60 (s, 3) 1.85 (s, 3) ¹⁾

a) Die OH-Signale konnten mit zwei Ausnahmen [7a: 5.70 (s, 1, br); 28: 5.39 (s, 1)] nicht mit Sicherheit zugeordnet werden. – b) Von 8 und 9 konnten wegen Zersetzung in Lösung keine befriedigenden Spektren erhälten werden. – ⁶ In [D₆]Benzol. – ⁶ In [D₆]Aceton. – ⁹ Das 2-H-Signal konnte nicht mit Sicherheit zugeordnet werden. – ⁹ In [DJChloroform. – ⁸) Einschließlich 3-H. – ¹⁰ CH, CH₂ 1.27 (s, 21, br), CH₃ 0.90 (d, 12). – ¹⁾ CH, CH₂ 1.25 (s, 21, br), CH₃ 0.90 (d, 12). – ¹⁾ CH, CH₂ 1.25 (s, 21, br), CH₃ 0.80 (d, 12). – ¹⁾ CH, CH₂ 1.20 (s, 21, br), CH₃ 0.80 (d, 12). – ¹⁾ CH, CH₂ 1.20 (s, 21, br), CH₃ 0.80 (d, 12). – ¹⁾ CH, CH₂ 1.20 (s, 21, br), CH₃ 0.80 (d, 12). Bei den 5-10- η^6 -Komplexen 12-16 erfolgt lediglich eine Oxidation zum 1,4-Naphthochinon-System, während das Metall an den unsubstituierten Ring gebunden bleibt ($\rightarrow 22-26$). Damit lassen sich auch Naphthochinon-Komplexe darstellen, die auf direktem Weg aus Chinon und Metallcarbonyl nicht zugänglich sind. Eine Abspaltung des Naphthochinon-Liganden aus diesen Verbindungen erfordert stärkere Oxidationsmittel wie etwa Wasserstoffperoxid.

Die IR- und ¹H-NMR-Spektren von 7 – 28 sind den Tabellen 1 und 2 zu entnehmen.

Erhaltung der Konfiguration innerhalb der isoprenoiden Seitenkette

Ein wichtiges Kriterium der Vitamin K-Synthese ist die Erhaltung der Konfiguration an der allylischen Doppelbindung C2' = C3'. Deren Stereochemie läßt sich am einfachsten anhand der chemischen Verschiebung der 3'-Methylprotonen im ¹H-NMR-Spektrum bestimmen 11). So ist die Z-3'-Methylgruppe im natürlichen, E-konfigurierten Vitamin K₁₍₂₀₎ um ca. 0.1 ppm stärker entschirmt als der E-Methylrest im Z-Isomeren. Die herkömmliche Darstellung der K-Vitamine beruht auf der Kondensation der isoprenoiden Seitenkette an die Ringkomponente, wobei aufgrund des erforderlichen sauren Reaktionsmediums eine teilweise E-Z-Isomerisierung erfolgt und zu einem unerwünschten Anteil des biologisch nahezu inaktiven Z-Isomeren 12 führt. Dagegen verläuft die Vitamin K-Synthese via Pentacarbonyl(methoxyphenylcarben)chrom(0) unter vollständiger Konfigurationserhaltung. Die auf der Grundlage der ¹H-NMR-Spektroskopie für 17, 20 und 21 ermittelten Isomerenverhältnisse sind, wie Tab. 3 zeigt, gegenüber den Eninen 2, 5 und 6 unverändert. Der bereits auf der Stufe der Enine auftretende Z-Anteil von 10-15\% liegt in der Überführung des Terpenalkohols mit Bromwasserstoffsäure in das entsprechende Bromid begründet. Dies wird aus der Reaktionsfolge unter Verwendung eines Tetramethylnonadecenins 2 deutlich, das einen E-Anteil von 97% aufweist und zu einem Vitamin K₁₍₂₀₎ führt, das auch innerhalb der engeren Fehlergrenzen der HPLC-Analyse einen unveränderten E-Gehalt aufweist ¹³⁾.

Tab. 3. Erhaltung der Konfiguration innerhalb der isoprenoiden Seitenkette (E/Z in %)

H ₃ C−	H C≡C−CH ₂ CH ₃ 5,6,2	CH ₂ CH ₂ 20,	, R Сн ₃ 21,17
R	E/Z (C5, C6)	E/Z (C2', C3	')
H CH ₃ CH ₂ CH ₂ CH ₃	85/15	85/15	¹H-NMR ([±] 3)
CH_2CH_2 CH_3 CH_3	85/15	85/15	¹H-NMR ([±] 3)
-CH ₂ CH ₂ CH ₂ CH-) ₃ CH ₃	90/10	87/13	¹ H-NMR ([±] 3)
ĊН ₃	97/3	97/3	HPLC

Wir danken Herrn Prof. E. O. Fischer und der F. Hoffmann-La Roche AG, Basel, für die Unterstützung dieser Arbeit.

Experimenteller Teil

Alle Arbeiten wurden unter N_2 -Schutz mit getrockneten, N_2 -gesättigten Lösungsmitteln und N_2 -beladenen Adsorbentien ausgeführt. Die verwendeten Enine wurden nach bekannten Verfahren $^{14)}$ aus den Terpenbromiden und Propinylmagnesiumbromid synthetisiert bzw. freundlicherweise von der F. Hoffmann-La Roche AG, Basel, zur Verfügung gestellt.

IR-Spektren: Perkin-Elmer-Spektrometer, Modelle 21 und 577. – ¹H-NMR-Spektren: Jeol C-60 HL und JNM-PMX 60 sowie Varian EM 360. – Massenspektren: Varian MAT 311 A.

Die analytischen Daten der Verbindungen sind in Tab. 4 zusammengefaßt.

Als typische Beispiele für die Reaktionsschritte der Vitamin K-Synthesen werden die Darstellung und die Oxidation des Dihydrovitamin $K_{1(20)}$ -Komplexes 7 sowie die Abspaltung des Dihydrovitamin $K_{1(20)}$ -Liganden beschrieben.

Tricarbonyl[4-methoxy-2(3)-methyl-3(2)-(3,7,11,15-tetramethyl-2-hexadecenyl-1-naphthol]-chrom(0) (7): Eine Lösung von 3.12 g (10 mmol) Pentacarbonyl(methoxyphenylcarben)chrom(0) (1) und 4.30 ml (11.5 mmol) 6,10,14,18-Tetramethyl-5-nonadecen-2-in (2) in 35 ml tert-Butyl-methylether wird 1 h auf $45-55\,^{\circ}$ C erwärmt. Nach Abziehen des Lösungsmittels chromatographiert man den Rückstand mit Methylenchlorid/Pentan (1:2) an Kieselgel. Nach geringen Mengen unumgesetzter Ausgangsprodukte wird bei $-30\,^{\circ}$ C zunächst mit Methylenchlorid/Pentan (1:1) die 2-Phytyl-Verbindung 7a (3.47 g) und dann mit Ether/Methylenchlorid/Pentan (1:1:1) der 3-Phytyl-Komplex 7b (2.04 g) eluiert. Längeres Erwärmen der Ausgangsprodukte in Di-n-butylether auf $70-80\,^{\circ}$ C führt zu steigenden Anteilen des $5-10-\eta^6$ -Isomeren 12, das sich jedoch durch Säulenchromatographie nicht sauber von 7 abtrennen läßt.

Oxidation von 7 zu Vitamin $K_{1(20)}$: Eine Lösung von 5.0 mmol 7 in 50 ml Ether wird mit 7.5 mmol Silber(I)-oxid und einem Überschuß an $MgSO_4$ im Dunkeln gerührt. Nach Zugabe von 30 ml Ether wird filtriert, das Filtrat eingeengt, mit Ether/Pentan (1:100) an Kieselgel chromatographiert und die gelborange Zone aufgefangen. Geht man von einem Isomerengemisch von 7 und 12 aus, so läßt sich nach dem unkoordinierten Vitamin $K_{1(20)}$ (17) in einer violetten Zone dessen Tricarbonylchrom(0)-Komplex 22 eluieren.

4-Methoxy-2(3)-methyl-3(2)-(3,7,11,15-tetramethyl-2-hexadecenyl)-1-naphthol (28): Eine Lösung von 5.0 mmol 7 in 50 ml Ether wird in einem Stahlautoklaven 6 h unter einem CO-Druck von 50 bar auf 80°C erwärmt. Nach Entspannen des Autoklaven kühlt man die gelbe Lösung auf – 40°C ab und filtriert das entstandene Hexacarbonylchrom ab. Das Lösungsmittel wird abgezogen und das zurückbleibende Öl entweder mit Methylenchlorid/Pentan (2:1) an Kieselgel chromatographiert oder zur Trennung der beiden Stereoisomeren 28a und b der HPLC (Fa. Merck: Li chro prep Si 60, 15 – 25μ, Hexan/Ether (6:1), 25 ml/min, UV-Detektor 254 nm) unterworfen. Dabei wird 28a vor 28b eluiert ¹⁵⁾. – IR (Film): 28a: ν(OH) 3420, ν(OCH₃) 1062; 28b: ν(OH) 3450, ν(OCH₃) 1063 cm⁻¹.

6-Methoxy-2,5-dimethyl-2-(4,8,12-trimethyltridecyl)-2H-naphtho]1,2-b]pyran (27): Eine Lösung von 0.50 g (1.11 mmol) 17 in 20 ml Pyridin wird 10 h unter Rückfluß erhitzt. Nach Zugabe von 40 ml Pentan wird mehrfach mit Wasser ausgeschüttelt, die organische Phase über Na₂SO₄ getrocknet und das Lösungsmittel abgezogen. Der Rückstand wird in 20 ml Aceton gelöst, mit 0.5 ml (8.1 mmol) Methyliodid und 2.5 ml 36proz. Natronlauge versetzt und 2 h gerührt. Man verdünnt mit Wasser, ethert mehrmals aus, trocknet die Etherextrakte über Na₂SO₄ und chromatographiert das nach Abziehen des Lösungsmittels verbleibende Produkt mit Methylenchlorid/Pentan (1:1) an Kieselgel. Man erhält ein hellgelbes Öl. – ¹H-NMR ([D₆]Benzol): δ = ca. 8.20 (m, 2), ca. 7.30 (m, 2), C₆H₄; 6.48 (d, 1), 5.93 (d, 1), ³J_{H,H} = 10.0 Hz, 3,4-H; 3.55 (s, 3), OCH₃; 2.25 (s, 3) 5-CH₃; 1.37 (s, 3) 2-CH₃; 1.23 (s, 21) CH₂, CH; 0.89 (d, 12) CH₃. – IR (Film): v(OCH₃) 1063 cm⁻¹.

Chem. Ber. 115 (1982)

Tab. 4. Analytische Charakterisierung von 7-11 und 17-28*). Die Ausbeuten sind auf 1 bezogen

	Ausb.	Summenformel Molmasse			С	Anal H	yse Cr	О
7a ^{a)}	58	C ₃₅ H ₅₀ CrO ₅ Ber. 602.8	Gef. 602 v)	Ber. Gef.	69.74 69.80	8.36 8.58	8.63 7.93	
7 b b)	34	C ₃₅ H ₅₀ CrO ₅ Ber. 602.8	Gef. 602 v)					
8 c)	60	C ₁₉ H ₁₈ CrO ₅ Ber. 378.3	Gef. w)					
9 d)	85	C ₂₀ H ₂₀ CrO ₅ Ber. 392.4	Gef. 392 ^{v)}					
10 e)	91	C ₂₅ H ₂₈ CrO ₅ Ber. 460.5	Gef. 460 ^{v)}					
11 f)	90	C ₃₀ H ₃₆ CrO ₅ Ber. 528.7	Gef. 528 ^{v)}					
17g)	56	C ₃₁ H ₄₆ O ₂ Ber. 450.7	Gef. 450 ^{v)}	Ber. Gef.	82.59 82.29	10.31 10.63		7.10 7.00
18h)	38	C ₁₅ H ₁₄ O ₂ Ber. 226.3	Gef. 226 ^{v)}					
19 ⁱ⁾	51	C ₁₆ H ₁₆ O ₂ Ber. 240.3	Gef. 240v)					
20 k)	54	C ₂₁ H ₂₄ O ₂ Ber. 308.5	Gef. 308v)	Ber. Gef.	81.77 81.47	7.86 8.20		
211)	55	C ₂₆ H ₃₂ O ₂ Ber. 376.6	Gef. 376 ^{v)}	Ber. Gef.	82.92 82.88	8.58 8.97		
22 m)	5	C ₃₄ H ₄₆ CrO ₅ Ber. 586.7	Gef.586 ^{v)}					
23 n)	5	C ₁₈ H ₁₄ CrO ₅ Ber. 362.3	Gef. 362 v)					
240)	4	C ₁₉ H ₁₆ CrO ₅ Ber. 376.4	Gef. 376 ^{v)}					
25 p)	9	C ₂₄ H ₂₄ CrO ₅ Ber. 444.5	Gef. 444 ^{v)}					
26 q)	8	C ₂₉ H ₃₂ CrO ₅ Ber. 512.6	Gef. 512 ^{v)}					
27 r)	75 u)	C ₃₂ H ₄₈ O ₂ Ber. 464.7	Gef. 464 v)	Ber. Gef.	82.70 81.31	10.41 10.49		6.88 6.76
28 a s)	53	C ₃₂ H ₅₀ O ₂ Ber. 466.8	Gef. 466 ^{v)}					
28bt)	31	C ₃₂ H ₅₀ O ₂ Ber. 466.8	Gef. 466 ^{v)}					

^{*)} Alle Verbindungen sind ölige Substanzen und nur schwer vollständig von Lösungsmittelresten zu befreien.

c) Tricarbonyl[4-methoxy-2- oder -3-(3-methyl-2-butenyl)-1-naphthol]chrom(0).

d) Tricarbonyl[4-methoxy-2(3)-methyl-3(2)-(3-methyl-2-butenyl)-1-naphthol]chrom(0).

a) Tricarbonyl[4-methoxy-3-methyl-2-(3,7,11,15-tetramethyl-2-hexadecenyl)-1-naphthol]-chrom(0)

b) Tricarbonyl[4-methoxy-2-methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1-naphthol]-chrom(0).

e) Tricarbonyl[4-methoxy-2(3)-methyl-3(2)-(3,7-dimethyl-2,6-octadienyl)-1-naphthol]chrom(0).

Tricarbonyl[4-methoxy-2(3)-methyl-3(2)-(3,7,11-trimethyl-2,6,10-dodecatrienyl)-1-naphtholl-chrom(0).

g) 2-Methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1,4-naphthochinon (Vitamin $K_{1(20)}$).

- h) 2-(3-Methyl-2-butenyl)-1,4-naphthochinon.
- i) 2-Methyl-3-(3-methyl-2-butenyl)-1,4-naphthochinon (Vitamin K₂₍₅₎).
- k) 2-Methyl-3-(3,7-dimethyl-2,6-octadienyl)-1,4-naphthochinon (Vitamin $K_{2(10)}$).
- 1) 2-Methyl-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)-1,4-naphthochinon (Vitamin $K_{2(15)}$).

 m) Tricarbonyl[2-methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1,4-naphthochinon]chrom(0).
- n) Tricarbonyl[2-(3-methyl-2-butenyl)-1,4-naphthochinon]chrom(0).
- o) Tricarbonyl[2-methyl-3-(3-methyl-2-butenyl)-1,4-naphthochinon]chrom(0).
- p) Tricarbonyl[2-methyl-3-(3,7-dimethyl-2,6-octadienyl)-1,4-naphthochinon]chrom(0).
- q) Tricarbonyl[2-methyl-3-(3,7,11-trimethyl-2,6,10-dodecatrienyl)-1,4-naphthochinon]chrom(0).
- r) 6-Methoxy-2,5-dimethyl-2-(4,8,12-trimethyltridecyl)-2*H*-naphtho[1,2-*b*]pyran.
- s) 4-Methoxy-3-methyl-2-(3,7,11,15-tetramethyl-2-hexadecenyl)-1-naphthol.
- t) 4-Methoxy-2-methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1-naphthol.
- u) Bezogen auf 17.v) Massenspektrometrisch.
- w) Molekülpeak im Massenspektrum wird nicht beobachtet.
- 1) I. Mitteil.: K. H. Dötz und I. Pruskil, J. Organomet. Chem. 209, C 4 (1981).
- Übersichten: K. H. Dötz, Naturwissenschaften 62, 365 (1975); C. P. Casey in H. Alper (Hrsg.), Transition Metal Organometallics in Organic Synthesis, Vol. 1, Academic Press, New York 1976; F. J. Brown, Prog. Inorg. Chem. 27, 1 (1980).
 K. H. Dötz und I. Pruskil, Chem. Ber. 113, 2876 (1980).
- 4) Vorgetragen in Tübingen (Dozententagung 25.3.1981), Marburg 21.5.1981, Karlsruhe (26.5.1981), Aachen (3.6.1981), München (15.6.1981).
- 5) K. H. Dötz und R. Dietz, Chem. Ber. 110, 1555 (1977).
- 6) Vgl. D. McHale und J. Green, Chem. Ind. (London) 1962, 1867.
- 7) Vgl. J. Green, S. Marcinkiewicz und D. McHale, J. Chem. Soc. C 1966, 1422.
- 8) K. H. Dötz, J. Organomet. Chem. 140, 177 (1977).
 9) H. Mayer und O. Isler in D. B. McCormick und L. D. Wright (Hrsg.), Methods in Enzymo-
- logy, Vol. XVIII, Part C, S. 491, Academic Press, New York 1971.

 10) D. Manegold in Methoden der organischen Chemie (Houben-Weyl-Müller), Bd. IV/1b,
- S. 67ff., Georg Thieme Verlag, Stuttgart 1975.

 11) L. M. Jackman, R. Rüegg, G. Ryser, C. v. Planta, U. Gloor, H. Mayer, P. Schudel, M. Kof-
- ler und O. Isler, Helv. Chim. Acta 48, 1332 (1965).
 12) Th. E. Knauer, Ch. Siegfried, A. K. Willingham und J. T. Matschiner, J. Nutr. 105, 1519 (1975).
- 13) Wir danken der F. Hoffmann-La Roche AG, Basel, für die Überlassung und Analyse von Substanzproben.
- 14) W. Winter und F. Gautschi, Helv. Chim. Acta 45, 2567 (1962).
- 15) Wir danken Herrn P. Jandik für die HPLC-Arbeiten.

[290/81]